Proteomic and biochemical studies of lysine malonylation suggests its malonic aciduria-associated regulatory role in mitochondrial function and fatty acid oxidation

Gozde Colak1¶, Olga Pougovkina2¶, Lunzhi Dai1¶, Minjia Tan3, Heleen te Brinke2, He Huang1, Zhongyi Cheng4, Jeongsoon Park5, Xuelian Wan3, Xiaojing Liu6, Wyatt W. Yue7, Ronald J. A. Wanders2,8, Jason W. Locasale6, David B. Lombard5, Vincent C. J. de Boer2,8*, and Yingming Zhao1,3*

1Ben May Department of Cancer Research, University of Chicago, Chicago, IL, 60637, USA
2Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
3State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
4PTM Biolabs, Chicago, IL 60612, USA
5Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
6Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
7Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
8Department of Pediatrics, Emma’s Children Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
Equal contribution.

*Correspondence:

yingming.zhao@uchicago.edu, ph: (773) 834-1561
v.c.deboer@amc.uva.nl, ph: (31) 20 566 3927

Running title: Proteomic analysis of mammalian lysine malonylome
ABBREVIATIONS: Acetyl-CoA acetyltransferase (ACAT), ATP citrate lyase (ACLY), Acetyl-CoA carboxylase 1 (ACC1), Acyl-CoA binding protein (ACBP), carbamoyl phosphatase synthase 1 (CPS1), Carnitine Palmitoyl Transferase 1 (CPT1), fatty acid synthase (FAS), gene ontology (GO), high-performance liquid chromatography (HPLC), histone deacetylase (HDAC), Hydroxymethylglutaryl-CoA lyase (HMGCL), 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), Kyoto Encyclopedia of Genes and Genomes (KEGG), lysine acetylation (Kac), lysine malonylation (Kmal), lysine succinylation (Ksucc), mass spectrometry (MS), long chain-fatty acid transporter (LC-FATP), malonyl-CoA decarboxylase (MCD), MCD wild type human fibroblasts (MCD+/+), MCD deficient fibroblasts (MCD-/-), nicotine adenine dinucleotide (NAD⁺), post-translational modification (PTM), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), SIRT5 knock out (SIRT5 KO), pyruvate dehydrogenase complex (PDC), stable isotope labeling by amino acids in cell culture (SILAC), sirtuin (Sirt).
Summary

The protein substrates of SIRT5-regulated lysine malonylation (Kmal) remain unknown, hindering its functional analysis. In this report, we carried out proteomic screening, identifying 4042 Kmal sites on 1426 proteins in mouse liver, and 4943 Kmal sites on 1822 proteins in human fibroblasts. Elevated malonyl-CoA in Malonyl-CoA decarboxylase (MCD) deficient cells induces Kmal levels in substrate proteins. We identified 461 Kmal sites showing more than 2-fold increase in response to MCD deficiency, as well as 1452 Kmal sites detected only in MCD-/- fibroblast but not MCD+/+ cells, suggesting a pathogenic role of Kmal in MCD deficiency. Cells with increased lysine malonylation displayed impaired mitochondrial function and fatty acid oxidation, suggesting that lysine malonylation plays a role in pathophysiology of malonic aciduria. Our study establishes an association between Kmal and a genetic disease, and offers a rich resource for elucidating the contribution of the Kmal pathway and malonyl-CoA to cellular physiology and human diseases.
INTRODUCTION

Reversible acetylation at lysine residues in proteins has been extensively studied over the past few decades (1,2). This modification is now known to have important regulatory roles in diverse cellular processes and physiological conditions, such as transcription, metabolism, and aging (3-5). Dysregulation of the lysine acetylation pathway is associated with various diseases, such as cardiovascular disease and cancer (6,7). In addition to acetylation, recent studies show that lysine residues in proteins can be modified by a family of short-chain acylations: Propionylation, butyrylation, crotonylation, malonylation, succinylation, glutarylation, and 2-hydroxyisobutyrylation (8-13). Notable among the seven types of new lysine acylation pathways are lysine malonylation (Kmal), succinylation (Ksucc), and glutarylation (Kglu). Each of the three types of modifications have an acidic carboxylic group that changes the charge status from +1 to -1 charge at physiological pH, which is similar to that caused by protein phosphorylation, but more significant than lysine acetylation (Figure 1A). Accordingly, these acidic lysine acylations likely have a more substantial impact on the substrate protein’s structure and function than lysine acetylation, when modified at the same lysine residue(s). Recent studies demonstrate that pyruvate dehydrogenase complex (PDC), succinate dehydrogenase, and carbamoyl phosphatase synthase 1 (CPS1) can be regulated by Ksucc and Kglu, respectively, suggesting that acidic lysine acylation pathways can have unique functions distinct from the widely studied lysine acetylation pathway (11,14).
Kmal was initially identified in both E. coli and mammalian cells by using HPLC-MS/MS, co-elution of synthetic peptides, isotopic labeling, and Western blotting analysis with pan anti-Kmal antibodies (8, 15). The Lin group and our group have previously demonstrated robust enzymatic activities of SIRT5, both in vitro and in vivo, in demalonylation, desuccinylation, and deglutarylation (9, 11, 14, 15). The demalonylation and desuccinylation activities of SIRT5 require NAD\(^+\), but can be inhibited by nicotinamide, a class III HDAC inhibitor (15). Given the fact that isotopic malonate can label lysine malonylation and that acyl-CoAs are the precursor for other lysine acylations (e.g., acetyl-CoA for lysine acetylation), malonyl-CoA is likely the precursor for the lysine malonylation reaction (8, 15). Despite this progress, the substrates for this new modification pathway remain largely unknown, representing a major bottleneck for studying its biological functions.

Malonyl-CoA is a tightly regulated metabolic intermediate in mammalian cells (16). Malonyl-CoA is produced by acetyl-CoA carboxylase and consumed by malonyl-CoA decarboxylase (MCD, E.C. 4.1.1.9), fatty acid synthase (FAS), and fatty acid elongases (16) (Figure 1B). In addition to being a key intermediate for fatty acid biosynthesis and fatty acid elongation, malonyl-CoA has diverse regulatory functions. Malonyl-CoA was shown to be a potent inhibitor of carnitine palmitoyl transferase 1 (CPT1) and thereby regulates hepatic fatty acid synthesis, \(\beta\)-oxidation, and ketogenesis (16) (Figure 1B). It was reported that malonyl-CoA can function as a key intermediate in the hypothalamus as an energy sensor (17). Higher malonyl-CoA levels are observed in skeletal muscle biopsies of type 2 diabetic patients (18). Elevated fatty acid oxidation
observed during cardiac ischemia/reperfusion has been attributed to the reduction of malonyl-CoA levels in the heart. Accordingly, increasing malonyl-CoA levels has been proposed as a strategy to improve cardiac function (19). Acetyl-CoA carboxylases, enzymes that are known to be important for biosynthesis of malonyl-CoA, are associated with physiology and diseases. Mice with genetic knockout of acetyl-CoA carboxylase 2 gene are resistant to obesity and diabetes, when fed with high calorie diets (20). Accordingly, acetyl-CoA carboxylases have been proposed as drug targets for diverse human diseases, including diabetes, obesity, and cancer (21). Nevertheless, potential roles for malonyl-CoA in human pathology are not well understood.

MCD is a 55 kDa enzyme that catalyzes conversion of malonyl-CoA to acetyl-CoA, thus maintaining homeostatic levels of these metabolites in mitochondria and peroxisomes. In the cytosol, malonyl-CoA is controlled by two enzymes with opposite activities, MCD and acetyl-CoA carboxylase. MCD deficiency, or malonic aciduria, is an inborn metabolic disorder caused by MCD mutations that reduce or eliminate activity of this enzyme and therefore compromise conversion of malonyl-CoA to acetyl-CoA (22). These patients have high levels of malonylcarnitine (C3DC) in blood and high level of organic acids, such as malonic acid, in the urine (23). Diverse symptoms are observed among the malonic aciduria patients, including delayed development, seizures, diarrhea, vomiting, low blood sugar (hypoglycemia), and cardiomyopathy (22). It appears that inhibition of fatty acid catabolism caused by high level of malonyl-CoA is at least partially responsible for the manifestations of disease. We recently showed that MCD deficient patient cells (MCD-/-) show increased Kmal levels (24). Therefore it is
therefore possible that Kmal could be an important mechanism mediating the pathophysiology of MCD deficiency. Nevertheless, how the increased Kmal levels, caused by high level of malonic acid in malonic aciduria patients and other diseases, impacts cellular function and regulates physiology remains unknown.

In this study, we used a proteomic approach to identify Kmal substrates and map their modification sites, by affinity enrichment of malonylated peptides and HPLC/MS/MS analysis. We identified 4016 Kmal sites on 1395 proteins in SIRT5-knockout mouse liver, and 4943 Kmal peptides on 1831 proteins in MCD+/+ and MCD-/- human fibroblasts. Four hundred sixty-one Kmal sites on 339 proteins showed a 2-fold increase or more in MCD-/- cells relative to MCD+/+ cells, and 1452 Kmal sites on 822 proteins were only detected in MCD-/- cells, suggests that MCD activity has a profound impact on Kmal levels and distribution. The malonylated proteins induced in MCD-/- cells are associated with diverse pathways, including fatty acid metabolism and neurological diseases. We further showed that MCD -/- cells with increased lysine malonylation have impaired mitochondrial respiration and fatty acid oxidation. Our proteomics data illuminates the landscape of the Kmal modification in mammalian cells, offer a valuable resource for studying its biology, and proposes possible roles of Kmal in diseases associated with dysregulation of malonyl-CoA homeostasis.

MATERIALS AND METHODS
Materials — Chemicals were purchased as analytical grade from Sigma-Aldrich, Inc. (St. Louis, MO). Modified sequencing-grade trypsin was purchased from Promega Corporation (Madison, WI). Pan anti-malonyllysine antibody and pan anti-malonyllysine agarose beads were from PTM Biolabs, Inc (Chicago, IL). MS grade water and acetonitrile were from Thermo Fisher Scientific (Waltham, MA). C18 ZipTips were purchased from Millipore Corporation (Billerica, MA). SILAC DMEM media (CCFDA003-132J01) was purchased from UCSF Cell Culture Facility (San Francisco, CA). XerumFree reagent (XF205) was purchased from MayFlower Bioscience (St. Louis, MO). Dialyzed serum (Gibco-26400) was purchased from Life Technologies, Thermo Fisher Scientific (Grand Island, NY).

Preparation of mouse liver lysate — Four two-month old male Sirt5 KO mice (25,26) were anesthetized with isoflurane overdose, and the blood in the liver was removed by perfusion with ice-cold PBS for 5 min. Liver was homogenized in a glass dounce homogenizer in SDS lysis buffer (20 mM Tris HCl pH 6.8, 1% SDS, 5% β-Mercaptoethanol, 10% glycerol, 25 mM nicotinamide). The lysates from four livers were pooled together and the sample was clarified by centrifugation at 16,000g. The protein in the supernatant was precipitated with 10% (v/v) trichloroacetic acid. Then the precipitated proteins were in-solution digested with trypsin as previously described (27).

Preparation of SILAC samples — Human dermal fibroblast cells lines: MCD+/+ (control cells) and MCD-/- (malonyl-CoA decarboxylase deficient cells) were obtained from Gaslini BioBank, Italy. The cells were grown in SILAC DMEM, supplemented with
L-Glutamine (584 mg/L), 10% (v/v) dialyzed serum, and 2% (v/v) Serum Free reagent. Regular L-Lysine (\(^{12}\text{C}_6^{14}\text{N}_2\)) and L-Arginine (\(^{12}\text{C}_6^{14}\text{N}_2\)) were added to the “Light” media (final concentration: 100mg/L) used for culturing MCD-/- cells. “Heavy” isotopic L-Lysine (\(^{13}\text{C}_6^{15}\text{N}_2\)) and “light” L-Arginine (\(^{12}\text{C}_6^{14}\text{N}_2\)) was added to the “Heavy” media (final concentration: 100mg/L) used for culturing MCD+/+ control cells. Both cells were grown in parallel, until MCD+/+ cells were sufficiently labeled by the isotopic lysine.

Both MCD+/+ and MCD-/ cells were lysed in SDS buffer (20 mM Tris HCl pH 6.8, 1% SDS, 5% \(\beta\)-Mercaptoethanol, 10% glycerol, 25 mM nicotinamide). Twelve milligram of each cell lysate were mixed and precipitated overnight by 10% TCA for tryptic digestion.

HPLC Fractionation — The tryptic peptides were fractionated by using a reversed-phase column (Luna C18 10 mm x 250 mm, 5 µm particle, 100 Å pore size, Phenomenex Inc., Torrance, CA) in Discovery VP preparative HPLC system (Shimadzu Corp., Kyoto, Japan). The peptides were fractionated into 75 fractions using a gradient from 2% to 90% buffer B (10 mM ammonium formate in 90% acetonitrile and 10% water, pH 7.8) in buffer A (10 mM ammonium formate in water, pH 7.8) at a flow rate of 4 ml/min in 60 min. The 75 fractions were finally combined equally into 5 final fractions for mouse liver samples, and 10 final fractions for MCD SILAC sample, respectively. Each fraction was condensed by using SpeedVac (ThermoSavant SPD111V). The peptide solution was used for immunoaffinity enrichment.
Affinity Enrichment of the Peptides Containing Kmal — The peptides containing Kmal were enriched using a procedure described previously (27). The tryptic peptides from each fraction were resolubilized in 100 mM NH₄HCO₃ (pH 8.0). Samples were centrifuged at 20,000g for 10 min to remove insoluble particles. The peptides were incubated with 15 µL of agarose beads conjugated with anti-malonyl lysine antibody at room temperature for 4 h with gentle rotation. The beads were washed three times with NETN buffer, twice with ETN buffer (50 mM Tris HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA) and once with water. Enriched Kmal peptides were eluted from the beads by washing three times with 0.1% trifluoroacetic acid. The eluted Kmal peptides were dried in a SpeedVac.

Nano-HPLC-MS/MS Analysis — The enriched Kmal samples were first desalted using OMIX C18 tips (Agilent Technologies Inc., Santa Clara, CA) and then dissolved in solvent A (0.1% formic acid in water). Samples were injected onto a manually packed reversed-phase C18 column (100 mm × 75 µm, 3-µm particle size, Dr. Maisch GmbH, Ammerbuch, Germany) connected to an Easy-nLC 1000 HPLC system (Thermo Fisher Scientific Inc., Waltham, MA). Peptides were eluted from 5% to 90% solvent B (0.1% formic acid and 1% water in acetonitrile) in solvent A with a 1 h gradient at a flow rate of 200 nl/min. The analytes were directly ionized and sprayed into a Q Exactive mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA) by a Nanospray Flex™ Ion Sources. Full MS scans were acquired in the Orbitrap mass analyzer over the range m/z 300-1400 with a mass resolution of 70,000 at m/z 200. The 15 most intense peaks of the precursor ions were fragmented in the HCD collision cell with normalized collision
energy of 27, and tandem mass spectra were acquired with a mass resolution of 17,500
at m/z 200. Lock mass at m/z 445.120024 was enabled for internal calibration of full MS
spectrum. Ions with either a single charge or more than 4 charges were excluded from
MS/MS fragmentation and the dynamic exclusion duration was set to 25s.

 Data Processing and Analysis — MaxQuant software (v 1.3.0.5) was used for
identifying and quantifying protein and malonylated peptides. Peaklist generation and
precursor mass recalibration of the raw MS data were carried out by MaxQuant
software. Trypsin was specified as the cleavage enzyme and the maximum number of
missed cleavage was set at 3. Methionine oxidation, protein N-terminal acetylation,
lysine acetylation (Kac), Kmal (specified for neutral loss of CO₂ in MS/MS
fragmentation), and Ksucc were specified as variable modifications, and cysteine
alkylation by iodoacetamide was specified as a fixed modification for all database
searching. Database searching was performed against the UniProt mouse (50,807
sequences, release date: May, 2013) or human (88,817 sequences, release date:
February, 2014) reference protein sequence database concatenated with reversed
decoy database with initial precursor mass tolerance of 7 ppm. Mass tolerance for
fragment ions was set at 20 ppm. False discovery rate (FDR) thresholds for protein,
peptide and modification site were fixed at 0.01. The identified peptides with MaxQuant
Andromeda score below 50 and localization probability below 0.75 were removed prior
to bioinformatics analysis.
Malonyl-CoA Measurement —The cells were treated with 15 µM Orlistat or vehicle only for 24 h at 80% confluence. The media were quickly removed and the dish was placed on top of dry ice. One ml of extraction solvent (80% methanol/water) was immediately added, and the dishes were transferred to the -80 °C freezer. The dishes were left for 15 min and then cells were scraped into extraction solvent on dry ice. The whole solution was centrifuged with the speed of 20,000 g at 4 °C for 10 min. Here, cell extracts were prepared from three wells to make biological triplicates. The supernatant from tissue extract was transferred to a new tube for LC/MS/MS analysis. All samples were dried in a vacuum concentrator (Speed Vac).

Ultimate 3000 UHPLC (Dionex) was coupled to Q Exactive-Mass spectrometer (QE-MS, Thermo Scientific) for metabolite separation and detection. For Acyl-Coenzyme A (Acyl-coA) analysis, a reversed phase liquid chromatography (RPLC) method was used. A Luna C18 column (100 x 2.0 mm i.d., 3 µm; Phenomenex) was employed with mobile phase A: water with 5 mM ammonium acetate (pH = 6.8), and mobile phase B: methanol, at a flow rate of 0.2ml/min. The linear gradient was: 0 min, 2% B; 1.5 min, 2% B; 3 min, 15% B; 5.5 min, 95%B; 14.5 min, 95%B; 15 min, 2%B; 20 min, 2% B. The column was at room temperature.

The Q Exactive mass spectrometer (QE-MS) was equipped with a HESI probe, and the relevant parameters were as follows: heater temperature, 120 °C; sheath gas, 30; auxiliary gas, 10; sweep gas, 3; spray voltage, 3.6 kV for positive mode. The capillary temperature was set at 320 °C, and S-lens was 55. A full scan range was set at 300 to
1000 (m/z). The resolution was set at 70 000 (at m/z 200). The maximum injection time (max IT) was 200 ms. Automated gain control (AGC) was targeted at 3×10^6 ions. For CoA analysis, cell extract was dissolved into 30 µl of water with 50 mM ammonium acetate, pH 6.8. Samples were centrifuged at 20,000 g at 4 °C for 3 min and the supernatant was transferred to LC vials. The injection volume was 8 µl for CoA analysis.

Raw data collected from LC/MS/MS were processed on Thermo Scientific software Sieve 2.0. Peak alignment and detection were performed according to manufacturer’s protocols. For a targeted metabolomics analysis, a frameseed including Acyl-CoA metabolites that has been previously validated was used for targeted metabolite analysis with data collected in positive mode, with the m/z width set at 8 ppm. Statistical significance was calculated based on student’s t test (unpaired, two tailed).

Motif Analysis for Lysine Malonylation Substrates — The standalone version of IceLogo (version 1.2) software was used to analyze the preference of flanking Kmal site sequence from mouse liver or human MCD cells (28). The embedded Swiss-Prot “Mus musculus” or "Homo sapiens" was used as the negative set. Six flanking amino acid residues on each side of a lysine malonylated site were selected as the positive set.

Functional Enrichment Analysis — Functional enrichment analysis of lysine malonylated proteins was carried out using DAVID (Functional Annotation Bioinformatics Microarray Analysis) Bioinformatics Resources v 6.7 with the total mouse or human genome information as the background (29). All identified lysine malonylated
proteins were subjected to database analyses using Gene Ontology (GO) (30) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways (31). GO FAT database from DAVID was selected in this analysis. The family-wide false discovery rate was corrected by Benjamini-Hochberg method using adjusted P value cutoff 0.05.

Protein-Protein Interaction Network Analysis — Protein-protein interaction networks of lysine malonylome were analyzed using STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database (version 9.1, confidence score 0.7) visualized by Cytoscape software (version 3.1.0) with MCODE App toolkit (32). The confidence score is the approximate probability that a predicted link exists between two enzymes in the same metabolic map in the KEGG database. Confidence limits are as follows: low confidence 0.2 (or better), medium confidence 0.5, high confidence 0.75, the highest confidence 0.95.

Protein complex enrichment analysis — Manually-curated core complexes indexed by CORUM (the comprehensive resource of mammalian protein complexes) database were used for the analysis of lysine malonylated substrates (http://mips.helmholtz-muenchen.de/genre/proj/corum). Mouse or human complexes indexed in the database were used for enrichment analysis of mouse liver or MCD human cells by Fisher’s exact test. Complexes with adjusted p-value< 0.01 were considered as significant.
Kmal stoichiometry calculation — Absolute stoichiometry calculation of malonylated site in SILAC samples was based on the previously reported algorithm (33) with slight modification (34). The calculation was based on the MS quantification data (SILAC ratio) of the Kmal peptides (x), the corresponding protein (z), and the corresponding unmodified peptide (y), with the assumption that only one type of PTM occurs at a given site. The SILAC ratios of unmodified peptides (y) and proteins (z) were calculated from the global protein expression analysis using the whole cell lysate mixture of SILAC labeled MCD+/+ and MCD-/- cells without antibody affinity enrichment. The calculation was assumed that only one type of PTM occurred at the given site of interest. The unmodified peptide was defined as the longest completely digested part of the peptide sequence derived from the malonylated peptide, which contains no other PTM. The absolute stoichiometry was calculated based on the SILAC ratios of x, y, and z using the same formula as previously reported (33).

Mitochondrial respiratory flux analysis — Measurements of cellular oxygen consumption were performed using an extracellular flux analyzer (Seahorse BioScience, Billerica, U.S.A.). Fao hepatoma cells were incubated for 24 hours in culture medium (DMEM supplemented with 2mM HEPES, 2% Pen/Strep and 10% FBS) containing 50 mM malonate. Next, cells were plated at 20,000 cells/well in Seahorse 96 well culture plates followed by overnight incubation in malonate-free medium. Human fibroblasts were maintained and plated in DMEM supplemented with 2mM HEPES, 2% Pen/Strep and 10% FBS at 30,000 cells/well. Seahorse mitochondrial function analysis was performed using the digitonin cell permeabilization protocol (35). Prior to measurements
of respiration, culture medium was replaced with MAS buffer (pH, 7.4, 220 mM mannitol, 70 mM sucrose, 10mM KH2PO4, 5mM MgCl2, 2 mM HEPES, 1 mM EGTA and 0.6% BSA-fatty acid free). Oxygen consumption rate (OCR) was analyzed following a single injection of either pyruvate/malate/ADP/digitonin, succinate/rotenone/ADP/digitonin or octanoylcarnitine/malate/ADP/digitonin, dissolved in MAS buffer without BSA at pH 7.4. Final digitonin concentration was 30 ug/ml for Fao hepatoma cells and 100 ug/ml for fibroblasts. Final substrate concentrations were: pyruvate (5 mM), malate (2.5 mM), succinate (10 mM), octanoylcarnitine (100uM), ADP (1 mM). After injection of substrate, oligomycin was injected at 1.5 uM final concentration followed by injection of antimycin (2.5 uM) and rotenone (1.25 uM).

Very-long chain acyl-CoA dehydrogenase (VLCAD) activity analysis — VLCAD activity was analyzed by monitoring the specific conversion of palmitoyl-CoA (C16:0-CoA) into palmitenoyl-CoA (C16:1-CoA) in cell lysates (36). Cell lysates (0.1 mg/ml) were incubated in 0.125 mM Tris pH 8.0 with 0.4 mM ferrocenium and 0.25 mM palmitoyl-CoA for 10 minutes at 37 degrees and reaction was stopped by addition of 10 ul 2N HCl followed by neutralization with 10 ul 2M KOH / 0.6M MES. Samples were deproteinated with acetonitrile followed by separation of substrate and products on a reversed-phase C18 HPLC and UV detection.

Long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) activity analysis — LCHAD activity was analyzed by incubating cell lysates (0.1 mg/ml) with 3-ketopalmitoyl-CoA (0.26 mM, synthesized in house) and NADH 0.4 mM in MES/KPi
(100mM/200mM) buffer with 0.1% Triton (pH 6.2) for 5 minutes at 37 degrees using a procedure previously described (37). To control for the conversion of 3-ketopalmitoyl-CoA by short-chain 3-hydroxy-acyl-CoA dehydrogenase (SCHAD), samples were incubated with and without N-Ethyl-Maleimide (NEM), because NEM inhibits only LCHAD and not SCHAD. After incubation, reactions were stopped with 10 ul 2N HCL followed by neutralization with 10 ul 2M KOH / 0.6M MES. Samples were deproteinated with acetonitrile followed by separation of substrate and products on a reversed-phase C18 HPLC and UV detection.

Immunocytochemistry — MCD +/+ and MCD-/- cells were grown on coverslips and treated with 15µM orlistat for 48 hr. Mito-tracker red was added to the culture medium at 0.1µM final concentration and incubated for 30 min. The cells were washed with PBS twice and fixed with 4% (v/v) paraformaldehyde and permeabilized with 0.2% (v/v) Triton-X. The cells were blocked with 2% bovine serum albumin for 2 hrs and incubated with the corresponding primary antibodies at 1.5ug/ml final concentration overnight. The cells were washed with PBS twice and incubated with secondary antibody Alexa Flour 488 (Invitrogen, Grand Island, NY) for 2 hrs, and washed with PBS twice. Hoechst (BD Biosciences, San Jose, CA) is added at 2µg/ml final concentration and incubated for 15 min. The coverslips are washed with PBS twice and mounted. The imaging was performed by using Leica SP2 DMIRE2 confocal microscope, with HCX PL APO Ibd.BL 63X 1.4 oil objective.
RESULTS

Kmal is affected by SIRT5 and MCD

Our previous studies showed that SIRT5 can catalyze removal of malonyl groups from malonylated lysine residues, both in vitro and in vivo (15). In addition, exogenous malonate can boost lysine malonylation, possibly by increasing intracellular concentrations of malonyl-CoA catalyzed by a short-chain acyl-CoA synthase (15). Consistent with this result, Sirt5 KO mice showed increased Kmal and Ksucc levels compared to their wild-type counterparts, but not Kac (Figure 2A).

We previously showed, by western blotting analysis, that Kmal levels are higher in MCD-/− cells than MCD+/+ cells (24). This result, in combination with our earlier observation that malonate can enhance Kmal (15), supports a hypothesis that MCD-/− induces malonyl-CoA concentration that in turn boost Kmal. If this is true, a reduction of lipid biosynthesis by reduced activity of fatty acid synthase (FAS) may also increase malonyl-CoA and Kmal levels. To test this, we treated both control MCD+/+ and MCD-/− cells with orlistat, an inhibitor of fatty acid synthase (38). Consistent with our hypothesis, we observed an increase of Kmal levels in response to orlistat in MCD+/+ cells (Figure 2B). In addition, orlistat further increased Kmal levels in MCD-/− cells compared to MCD+/+ cells while Kac and Ksucc levels remained largely unchanged (Figure 2C).

To test whether the enhanced Kmal levels are correlated with higher amounts of malonyl-CoA, we measured intracellular malonyl-CoA levels in MCD+/+ and MCD-/− cells using HPLC/MS-based metabolomics method. Our data showed that orlistat
significantly increased intracellular malonyl-CoA levels in both cell lines (Figure 2D), suggesting that increased lysine malonylation induced via orlistat treatment might be due to enhanced concentration of malonyl-CoA.

Taken together, three different strategies for enhancing malonyl-CoA levels lead to increased levels of lysine malonylation. This result is consistent with our previous work showing that increasing crotonyl-CoA, succinyl-CoA and glutaryl-CoA levels all result in increases of their respective lysine acylations (11,13,39).

Proteomic identification of Kmal peptides

Identifying protein substrates is critical to studying the biology of a PTM pathway, as was demonstrated in characterization of the lysine acetylation pathway (40-43). To identify Kmal substrate proteins and their modification sites, we used a proteomic approach involving affinity enrichment and subsequent HPLC/MS/MS analysis (Figure 3). Two experimental models were used, Sirt5 KO mice and MCD deficient fibroblasts from malonic aciduria patients. Analysis of Kmal substrates in mouse liver allows us to identify Kmal substrates in an organ important for cellular metabolism (Figure 3A). The liver also has the highest lysine malonylation levels among the mouse tissues that we screened (Figure S1). Quantification of Kmal substrates in MCD-deficient cells versus wild-type controls can reveal key Kmal substrates whose modification status is changed in response to malonic aciduria, and whose increased malonylation may play a pathogenic role in this disorder (Figure 3B).
Protein extracts from liver tissues of Sirt5 KO mice were prepared, tryptically digested, and resolved into 5 fractions by high-pH reversed phase (RP) HPLC. Kmal peptides were enriched using pan anti-malonyllysine antibody. The enriched Kmal peptides were analyzed by HPLC/MS/MS (Figure 3A). The acquired raw MS data were analyzed by MaxQuant software with a false discovery rate (FDR) of 0.01 at protein and peptide level for the identification of Kmal peptides. To ensure high confidence of the identifications, we removed Kmal peptides with Andromeda scores between 40 and 50, and localization probability below 0.75, prior to bioinformatic analysis (Table S1A). The Andromeda score is used for ranking the confidence of peptide identification for the MS/MS spectrum by the Andromeda search engine integrated in Maxquant software. A higher score indicates a more confident peptide identification. This analysis led to identification of 4016 Kmal sites in 1395 proteins in Sirt5 KO mouse liver (Figure 3C, top). A significant portion of the 427 malonylated peptides (9.6% of the total) with Andromeda scores between 40 and 50 may represent true positives, and these proteins were listed as Kmal candidates (Table S1B).

In a parallel experiment, we identified and quantified Kmal peptides in human dermal fibroblasts isolated from normal individuals (MCD+/+, labeled with “Heavy” lysine isotope) and from malonic aciduria patients that are deficient in MCD (MCD-/-, labeled with “Light” lysine isotope). Equal amount of protein lysates from both MCD+/+ and MCD-/- cells were combined in a 1:1 ratio and processed using the same procedure as described above for analysis of Kmal peptides. The study identified 4943 Kmal sites, with Andromeda scores >50, on 1831 proteins in human fibroblasts (MCD+/+ and MCD-/-).
We considered 732 Kmal sites with Andromeda scores between 40 and 50 as the true positive Kmal candidate peptides, and these are listed in Table S1D.

Among the Kmal substrates, we identified 21 histone marks in mouse liver and 19 histone marks in human fibroblasts (Table S2). Interestingly, most of them were not located at N-terminal tails of histones (Figure 3D). Similarly, 35 non-redundant histone lysine succinylation sites have been reported in mouse liver, which mostly localizes to C-terminal globular domains as well (14). These results suggest that both Kmal and Ksucc histone marks are likely to have differential regulatory function from the widely studied histone acetylation marks (Table S2).

We previously reported that Ala and Gly were over-represented in the flanking sequences of Ksucc sites, whereas Arg was largely depleted at both -1 and +1 positions (14). Similarly, we evaluated the flanking sequences of Kmal sites to identify if there was a structural preference for the location of this modification on the peptides. Motif analyses of Kmal sites in mouse liver (Figure S2A, left) and human fibroblasts (Figure S2B, left) showed significant similarity. Aliphatic amino acids, including Ala, Val, Ile and Gly, were over-represented at the flanking sequence of Kmal sites, similar to the situation with Ksucc sites, whereas Ser, Pro and Leu were under-represented. In contrast to the similarity of Kmal and Ksucc flanking sequences, positively charged residues such as Lys and Arg predominate in Kac motifs in mouse liver (44).
Quantification of changes in Kmal modification levels from MCD deficient cell versus its wild type

Using SILAC-based quantitative proteomics approach, we quantified the difference of Kmal substrate levels between MCD+/+ and MCD-/- cells, based on the levels of Kmal peptides and those of protein expression. In parallel, we also quantified changes of protein expression using whole cell lysates derived from a mixture of SILAC labeled MCD+/+ and MCD-/- cells. The changes of Kmal peptides were normalized to the change of their corresponding proteins' levels in MCD cells. Normalized changes of Kmal peptides were used for the subsequent analysis.

Among 4943 Kmal sites on 1822 proteins identified in MCD human fibroblasts, 3181 Kmal sites on 1257 proteins could be quantified (Table S1C-D). Among the 1762 unquantified Kmal sites, 1452 are present only in MCD-/- cells (“Light” only); these are the Kmal peptides that have no detected signal in "Heavy-labeled peptide" (Intensity H) from MCD+/+ cells, but significant intensity for the corresponding "Light-labeled peptide (Intensity L)" from MCD-/- cells, by MaxQuant analysis (Table S1C). The median MCD+/+:MCD-/- ratio of the quantifiable Kmal sites was 0.8284 (Figure 4A). These results clearly suggest that MCD deficiency has an impact in elevating Kmal levels in MCD-/- cells. 461 Kmal sites on 339 proteins increased in abundance by 2 fold or more (normalized log2 ratio (MCD+/+:MCD-/-) ≤ -1), while 1452 Kmal sites on 822 substrate proteins were present in “Light”-only MCD-/- cells (Figure 4B, Table S1C) Forty-eight Kmal sites on 38 Kmal proteins showed more than a 10-fold increase in MCD-/- cells (Table S1C). We considered these Kmal substrates to represent the core group of
MCD-/− stimulated Kmal substrates. KEGG pathway analysis indicated that these substrates are associated with TCA cycle, oxidative phosphorylation, amino acid degradation (valine, leucine, isoleucine, and lysine), fatty acid metabolism and propanoate metabolism pathways (Table S5E).

To calculate the stoichiometry of Kmal in MCD+/+ and MCD-/− cells, we modified a reported algorithm (45) as we described previously (14,46). The calculation was based on the successful quantification of a Kmal site, its corresponding protein, and the unmodified peptide form in the SILAC experiment (for details, see (34)). To achieve a more accurate calculation, we removed those Kmal sites that were previously reported to be acetylated and succinylated (47,48), to minimize errors caused by the two modifications at the same residues. This analysis enabled us to calculate the stoichiometry of 325 Kmal sites on 222 proteins in MCD-/− cells, with calculated stoichiometries ranging from 0.07% to 50.0% and in MCD+/+ cells, with a range from 0.01% to 48.6%, respectively (Figure 4C, Table S3). The two highest Kmal stoichiometry sites were K376 of adenylyl cyclase-associated protein 1 (50.0% in MCD-/− cells and 48.6% in MCD+/+ cells) and K41 of phosphoglycerate kinase (49.4% in MCD-/− cells and 48.2% in MCD+/+ cells). Very long chain acyl-CoA dehydrogenase (ACADVL, also known as VLCAD) catalyzes the first step of mitochondrial fatty acid oxidation. Nine Kmal sites were identified in VLCAD, among which five sites were detected in MCD-/− cells only, while the other four were up-regulated in MCD-/− cells, suggesting a dramatic increase of Kmal on this protein. Dynamic increase of two Kmal sites in VLCAD was 390- and 137-fold, respectively, in MCD-/− cells. Among 324 sites
whose stoichiometries were determined, 179 sites (55%) have more than a 2-fold increase of Kmal stoichiometry in MCD-/- cells (Table S3). For example, malonylation at K295 of mitochondrial 10-formyltetrahydrofolate dehydrogenase, responsible for formate oxidation, is increased from 0.7% in MCD+/- cells to 31% in MCD-/- cells. Malonylation at K126 of prohibitin-2, a mediator of transcriptional repression by nuclear hormone receptors, increased from 12.8% to 42.3% in MCD-/- cells.

Overlap among Kmal, Ksucc and Kac sites

To understand the similarities and differences among Kmal, Ksucc, and Kac sites, we compared our lysine malonylome data with previously published data (14,41,43,47). We found that, of all the identified Kmal sites in mouse liver, 640 (16%) sites (Figure 5A, right) and 595 (42%) proteins (Figure 5A, left) overlapped with Kac sites in mouse embryonic fibroblasts (MEF) (43). Five hundred and ten (36.5%) Kmal sites (Figure 5A, right) and 262 (6.5%) proteins (Figure 5A, left) overlapped with Ksucc sites in SIRT5 KO mouse liver (14). When we pooled the Ksucc sites reported in Sirt5 KO mouse liver and MEFs, and carried out the same analysis, 706 (17.6%) sites (Figure S2C, right) and 406 (29%) proteins (Figure S2C, left) overlapped with Kmal sites identified in Sirt5 KO mouse liver. Interestingly, we found that a significant portion of the malonylated proteins (46.2%) and sites (71.1%) identified in our mouse liver data do not overlap with the previously reported Ksucc and Kac data.

In a parallel experiment, we carried out similar analysis for the human malonylome. In this experiment, we obtained the Kac and Ksucc data from previous
publications (41, 47). Among the Kmal sites identified in human fibroblasts (combination of MCD+/+ and MCD-/-), 776 Kmal sites (Figure 5B, right) and Kmal 827 proteins (Figure 5B, left) overlapped with the human Kac proteome (41), and 671 sites (Figure 5B, right) and 550 proteins (Figure 5B, left) overlapped with the human Ksucc proteome (47). Similar to the mouse malonylome data, a significant portion of the human malonylated proteins (46.7%) and sites (75.7%) did not overlap with previously reported Ksucc and Kac data. Overall, the spectrum of lysine sites and protein targets subject to malonylation shows substantial non-overlap with Kac and Ksucc, suggesting that this modification likely plays roles in modulating biological processes distinct from other lysine PTMs.

Cellular localization of lysine malonylomes

SIRT5, a regulatory enzyme of Ksucc, Kglu, as well as Kmal, localizes predominantly to mitochondria, but is also present in the cytosol and nucleus (14, 49). Previously, we reported that 17.8% of Ksucc substrates (351) are localized in the mitochondria in mouse liver (Figure S2F, left) (14). Among the Ksucc substrates identified in human cervical cancer cells (Hela) (47), 17% Ksucc substrates exclusively localizes to mitochondria (Figure S2F, right).

To understand the cellular localization of Kmal substrates in mouse liver, we performed the same analysis for the Kmal dataset generated from mouse liver. Here, we compared our Kmal dataset with the mitochondria genes annotated in GO database (50). Of all the identified Kmal substrates, 316 (58%) of them are present in the
mitochondria and 274 (50%) of them are exclusively mitochondrial proteins (Figure 5C, left). Therefore, a comparable fraction of Kmal and Ksucc proteins from mouse liver localizes to mitochondria.

In parallel, we carried out similar analysis for Kmal proteins derived from human fibroblasts. Our result shows a striking difference of subcellular localization among Kmal substrates. Among the 1024 Kmal substrates identified in human fibroblasts, 338 (33%) of them localize mitochondria, of which 265 (26%) of them are exclusively mitochondrial (Figure 5C, right). The number of mitochondrial Kmal substrates from either mouse liver or human fibroblasts is comparable. However, in human fibroblasts, we identified a significantly higher number of nuclear and cytosolic substrates, with 262 (30%) and 342 (39%) proteins, respectively (Figure 5C, right). The cellular enzymes that catalyze lysine malonylation in mammalian cells are still unknown.

Additionally, we compared the Kmal proteins and sites in mitochondria to our previously reported Ksucc data (14). We found 198 mitochondrial Kmal proteins (13.9% of all Kmal proteins) (Figure S2D, left) and 432 mitochondrial Kmal sites (10.7% all Kmal sites) (Figure S2D, right) overlapped with mitochondrial Ksucc in mouse liver, whereas 37% mitochondrial Kmal proteins and 62% Kmal sites did not overlap. In human fibroblasts, 59% mitochondrial Kmal proteins (199) (Figure S2E, left) and 31% mitochondrial Kmal sites (344) (Figure S2E, right) overlapped with mitochondrial Ksucc data (47).
We also performed immunostaining of MCD+/+ and MCD -/- human fibroblasts with anti-malonyllysine, anti-acetyllysine and anti-succinyllysine antibodies along with Hoechst nuclear stain and MitoTracker Red (Figure 6A and 6B). Our staining results suggest that the strongest signals for Kac and Ksucc are confined in nucleus in both MCD+/+ and MCD-/- human fibroblasts (Figure 6A and 6B, 2nd and 3th rows). However, Kmal signals are distributed among cytosol and nucleus in MCD+/+ cells (Figure 6A, top row). Interestingly, most of the Kmal signal overlaps with MitoTracker Red in MCD-/cells (Figure 6B, top row) suggesting that Kmal levels increase specifically in the mitochondria of MCD-/cells.

Functional annotation of lysine malonylomes

To understand the biological functions of Kmal proteins, we performed enrichment analysis by using the Gene Ontology (GO) database (30), and Kyoto Encyclopedia of Genes and Genomes (KEGG) (51) for Kmal substrates identified in mouse liver and human fibroblasts. The GO biological process analysis of mouse liver Kmal substrates (Table S4) showed enrichment in oxidation/reduction (adj P = 5.45x 10^-51), protein translation (adj P = 5.71x 10^-49), cofactor metabolism (adj P =4.18x 10^-26), and fatty acid metabolism (adj P = 5.09x 10^-12) (Figure S3A, left). The GO analysis of human fibroblast malonylome (Figure S3B, left, Table S5) showed enrichment in protein expression processes such as translation (adj P = 2.22x 10^-55), translation elongation (adj P = 7.43x 10^-26), tRNA aminoacylation (adj P =1.01x 10^-20), and intracellular transport (adj P =5.30x 10^-31). Proteins associated with fatty acid β-oxidation were also enriched in the human fibroblast malonylome (adj P =2.34x 10^-7, Table S5).
The molecular function analysis of mouse liver Kmal substrates showed enrichment in nucleotide binding (adj P = 9.35x 10^{-35}), cofactor binding (adj P = 1.04x 10^{-27}), and ATP binding (adj P = 1.86x 10^{-15}) (Figure S3A, right). Kmal substrates in human fibroblasts were associated with nucleotide binding (adj P = 3.22x 10^{-45}), nucleoside binding (adj P = 2.77x 10^{-29}), ATP binding (adj P = 4.73x 10^{-26}), as well as aminoacyl-tRNA ligase activity (adj P= 2.74x 10^{-20}) (Figure S3B, right) supporting the idea that Kmal may be involved in regulating protein translation.

There was no significant difference between GO (Figure S4A) and KEGG pathway enrichments (Figure S4B) of all the proteins identified in human fibroblasts versus Light-only protein substrates derived from MCD-/- cells (Table S6). In addition, there was a significant overlap between the KEGG pathway analysis of mouse liver (Figure S3C) and human fibroblasts (Figure S3D). The top enriched categories of KEGG pathways for lysine-malonylated substrates were ribosome, valine/leucine/isoleucine degradation, proteasome and fatty acid metabolism (Figure S3C and S3D). Twenty nine of 45 key enzymes in mouse and 22 of 45 key enzymes in humans involved in regulation of fatty acid metabolism were lysine malonylated (Figure S5A and S5B, Table S5F). Among these, five enzymes (FAS, ACC1, ACLY, AMPK and CPT1) are closely associated with malonyl-CoA metabolism (Figure S5C).

Of particular note are a few proteins involved in fatty acid metabolism. We found that Acetyl-CoA acetyl transferase 1 (ACAT1), an enzyme participating in multiple
metabolic pathways including fatty acid metabolism, was malonylated at seven sites: K174, K190, K243, K251, K263, K268, and K273 (Figure 4D). The Kmal level of (MCD+/+: MCD-/- SILAC ratio of 0.0044) K263 of ACAT1, was increased more than 200-fold in MCD-/- cells. K263 is in close proximity with Coenzyme A binding site and possibly makes two hydrogen bonds with Coenzyme A, suggesting a possibility that this residue is important in regulating the protein's function. K263 was previously reported to be acetylated and succinylated as well (41,47). In addition, among all the Kmal sites of ACAT1, K174 is acetylated, and K251 is succinylated (Choudhary et al., 2009). Therefore, these Kmal sites might also contribute to regulation of protein function, depending on the type of modification. Hydroxymethylglutaryl-CoA lyase (HMGCL) is malonylated at three lysine sites (K48, K93, and K137), of which K48 malonylation is increased roughly 39-fold in MCD-/- cells. HMGCL exclusively localizes to mitochondria and is specifically responsible for leucine degradation, as well as ketone production during fat breakdown. HMGCL deficiency is a rare genetic disease that causes metabolic acidosis and hypoglycemia (52). A K-to-N mutation at K48 of HMGCL ablates enzymatic activity, which suggests that K48 is a critical position for enzymatic function (53). Therefore, lysine malonylation of K48 may lead to changes in enzymatic activity of this protein. ATP citrate lyase (ACLY) catalyzes conversion of citrate to acetyl-CoA (Figure S5C), which can be converted further to malonyl-CoA by ACC1. Among the 14 Kmal sites in ACLY, K68, located next to ATP binding site (K66-K67), is malonylated, and therefore might alter the ATP binding ability of the protein. Enrichment of fatty acid metabolism proteins in the malonylomes in both mouse liver and human fibroblasts
suggests a possible feedback regulation of fatty acid biosynthesis by malonyl-CoA-mediated lysine malonylation.

Mitochondrial function and fatty acid oxidation is impaired in MCD-/- cells

Integration of our bioinformatic analyses of lysine malonylated proteins identified in mouse liver and human fibroblast demonstrates that among metabolic pathways, proteins involved in fatty acid metabolism were preferentially heavily malonylated. Fatty acid synthesis, which utilizes malonyl-CoA as substrate for synthesis and chain elongation, primarily occurs in the cytosol, whereas fatty acid oxidation occurs in mitochondria and peroxisomes. Because MCD-/- cells showed greatly increased Kmal immunostaining in mitochondria compared to MCD+/+ cells (Figure 6), and MCD deficient patients have been reported to present with pathologies similar to patients with fatty acid oxidation defects, we wanted to understand whether mitochondrial function and fatty acid oxidation is affected in MCD-/- cells. Long-chain fatty acids are broken down to medium and short-chain fatty acids in mitochondria by very-long chain acyl-CoA dehydrogenase (VLCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) together with the mitochondrial trifunctional protein (MTP) complex encoded by the HADHA and HADHB genes. MTP complex consists of hydroxyl-acyl-CoA dehydrogenase (LCHAD), long-chain enoyl-CoA hydratase (LCEH), and long-chain keto-acyl-CoA thiolase (LCKAT) enzymatic activities. In MCD-/- cells multiple mitochondrial fatty acid oxidation proteins were heavily malonylated, and both VLCAD and HADHA were substantially more malonylated than in WT cells (Figure 7A and
Figure S7B). Many of the detectable malonylated lysine sites were only present in MCD-/- cells. Examination of the crystal structure of VLCAD (PDB code 2uxw, 3b96) reveals that sites of lysine malonylation are scattered across the polypeptide (Figure 7B). Three of the Kmal sites (K278, K331, K480) occupy highly conserved amino acid positions among VLCAD orthologues. A majority of the lysine sites are surface-exposed, and their malonylation may impact different properties of the protein: three (K480, K482, K55) are located at the putative surface of membrane attachment (54); two (K635, K639) are found in proximity to the dimerization interface, and three (K276, K278, K331) are positioned near the active site where FAD and acyl-CoA molecules bind (Figure 7B).

We next analyzed whether VLCAD enzymatic activity was affected by malonylation in MCD-/- cells. Indeed, VLCAD activity was decreased 45% in MCD-/- cells as compared to MCD+/+ cells (Figure 7C). Basal expression levels of VLCAD protein were similar in MCD+/+ and MCD-/- cells (Figure S7A). Furthermore, the LCHAD activity of MTP was significantly decreased in MCD-/- cells as well (Figure 7D).

Accumulation of cytosolic malonyl-CoA is known to inhibit CPT1, which is located on the outer membrane of the mitochondria. CPT1, together with CACT and CPT2, imports acyl-CoAs into the mitochondria for beta oxidation. Our data now suggest that increase of lysine malonylation on proteins within the mitochondrial matrix can also inhibit fatty acid oxidation. To test if mitochondrial function and fatty acid oxidation are indeed affected by lysine malonylation, we studied impact of malonate on mitochondrial function in Fao liver cells. Previously, we have shown that malonate treatment induces significant lysine malonylation (15). To eliminate any confounding effects from direct
interference of malonate itself on mitochondrial function, we treated cells with malonate for one day, followed by a malonate-free overnight incubation, prior to analysis of mitochondrial function. Malonate treatment of cells significantly reduced the oxygen consumption rate (OCR) in the context of pyruvate, succinate and octanoylcarnitine mitochondrial oxidation (Figure 7E, F and G). CPT1 is not required for oxidation of octanoylcarnitine; hence inhibition of CPT1 by malonyl-CoA cannot explain the observed decrease in OCR in the presence of octanoylcarnitine. Instead, this finding likely indicates that either oxidative phosphorylation or fatty acid oxidation activity is decreased by lysine malonylation.

Finally, we analyzed both succinate and octanoylcarnitine-driven OCR in MCD -/- and MCD+/+ cells. Interestingly, succinate-driven OCR was only mildly reduced in MCD-/- cells (Figure 7H and 7J), whereas octanoylcarnitine-driven OCR was 40% decreased in MCD-/- cells as compared to MCD+/+ cells (Figure 7I, 7J). Together, these findings suggest that malonyl-CoA can inhibit mitochondrial fatty acid oxidation in MCD-/- cells, possibly through elevated lysine malonylation, independently of effects on CPT1.

DISCUSSION

In this study, we performed the first global proteomic analysis of the lysine malonylome by using Sirt5 KO mouse liver and human dermal fibroblasts. Overall, we identified 4042 lysine malonylated peptides in 1426 proteins in Sirt5 KO mouse liver,
and 4943 malonylated peptides in 1822 proteins in human fibroblasts. Four hundred sixty-one Kmal sites on 339 proteins showed a 2-fold increase or more in MCD-/- cells relative to MCD+/+ cells, and 1452 Kmal sites on 822 proteins were only detected in MCD-/- cells, suggesting that MCD activity has a profound impact on Kmal levels.

Our analysis revealed intriguing differences between Kmal substrates versus other lysine PTMs (10,41). First, Kmal substrates show divergent cellular localization patterns between liver and fibroblast cells (Figure 5C). In mouse liver, Kmal and Ksucc predominantly localized to mitochondria, with a small number of substrate proteins in the cytosol and nucleus. In contrast, in the case of MCD+/+ human fibroblasts, Kmal proteins were distributed among cytosol and nucleus (Figure 5C, right), whereas in MCD-/- cells, increased localization of Kmal substrates in the mitochondria was observed. Malonyl CoA is reported to localize to extracellular, membrane, mitochondrial and peroxisomal spaces of the cell according to the Human Metabolome Database (http://www.hmdb.ca/metabolites/hmdb01175). The concentration of malonyl CoA in mitochondria is not known. It is likely that mitochondrial malonyl CoA is the cofactor for lysine malonylation reaction.

Second, the identification of a large number of Kmal substrates in the cytosol and nucleus of human fibroblasts suggests the potential existence of enzyme(s) catalyzing transfer of malonyl groups from malonyl-CoA to lysine residues. It has been proposed that this process occurs non-enzymatically in the high-pH chemical environment of mitochondria (4,47,55). However, this in vitro spontaneous protein acylation cannot
exclude the possibility of an enzyme-catalyzed PTM reaction, as in the case of lysine acetylation, which can occur via both non-enzymatic and enzyme-catalyzed reactions. Given the fact that the pH is lower in the cytosol and nucleus than in mitochondria, and that the subcellular localization of Kmal substrates is very different in liver versus fibroblasts, it is possible that there is significant enzyme-catalyzed lysine malonylation outside mitochondria in human fibroblasts.

Third, as much as 2693 Kmal sites remain at similar levels (with less than a 2-fold change) in human fibroblasts, with or without the expression of MCD enzyme. Cellular localization analysis showed that these Kmal substrates were not enriched in mitochondria. In stark contrast, the proteins showing increased Kmal in MCD deficiency (more than 2 fold change) were enriched in mitochondrion (Table S6F). This suggests that the increased Kmal occurring in the context of MCD deficiency primarily impacts mitochondrial functions, including respiration. Indeed, we showed that lysine malonylation inhibited mitochondrial function and impaired octanoylcarnitine oxidation in MCD -/- cells. Because mitochondrial octanoylcarnitine oxidation does not require CPT1, our studies demonstrate that malonyl-CoA can also impact fatty acid oxidation and mitochondrial function via malonylation of proteins located in the mitochondrial matrix, independently of CPT1. This implies that malonyl-CoA can play a major role in controlling mitochondrial function by lysine malonylation of mitochondrial matrix proteins.

Diverse pathological symptoms have been observed in patients with inborn MCD deficiency, several of which are also common in fatty acid oxidation disorders, such as
cardiomyopathy, muscle weakness and hypoglycemia (56)(57). This observation has led to the hypothesis that CPT1 inhibition by elevated malonyl-CoA levels could play a role in the pathophysiology of MCD deficiency. Indeed, palmitate and myristate oxidation was severely reduced in MCD deficient patient fibroblasts, implying a possible role of malonyl-CoA in inhibition of fatty acid oxidation in pathogenesis of this disorder (58). In light of our result that malonyl-CoA accumulation can impact metabolic pathways via CPT1-independent lysine malonylation, it seems likely that accumulation of mitochondrial lysine malonylation also plays a pathogenic role in MCD deficiency. Moreover, KEGG pathway analysis of Kmal substrates showed enrichment of the modification in pathways besides those associated with fatty acid metabolism. MCD deficient patients can suffer from delayed neurological development (59). Although the pathogenic mechanism of this effect is still not well understood, it has been suggested that disruption of the interaction between malonyl-CoA and CPT1 might be a cause (60). Our data suggest that elevated Kmal on many mitochondrial proteins may represent another mechanism of the pathology associated with malonic aciduria. Since Kmal levels are regulated by SIRT5, this raises the possibility that pharmacologic strategies to increase SIRT5 activity may represent a rational treatment strategy in MCD deficiency.

Identification, characterization and proteomic screening of three acidic lysine acylation pathways, *malonylation, succinylation, and glutarylation*, suggest association of these pathways with multiple inborn metabolic diseases. In this study, our results suggest that elevated malonic acid in MCD deficient cells can induce Kmal levels in substrate proteins that in turn might impair the activities of key cellular metabolic
enzymes, such as VLCAD and LCHAD. Glutaric Acidemia I (GA, OMIM: 231670) is caused by homozygous or compound heterozygous mutations in the gene encoding glutaryl-CoA dehydrogenase (GCDH). A previous study demonstrated that GA patients as well as GCDHKO mice display increased levels of glutaryl-CoA (61). We showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric academia type I disease. This result suggests that up-regulation of glutaric acid and glutaryl-CoA can lead to elevated levels of Kglu that in turn modulate activities of at least some substrate proteins (11). Additionally, we previously demonstrated that lysine propionylation and lysine butyrylation also accumulate in propionyl-CoA carboxylase (PCC) deficiency and short-chain acyl-CoA dehydrogenase (SCAD) deficiency, respectively (24). Furthermore, mutations in the genes that are involved in succinyl-CoA metabolism, such as ketoglutarate dehydrogenase, succinyl-CoA–3-ketoacid-Aoenzyme A transferase and succinyl-CoA ligase, lead to metabolic diseases (62). Weinert et al. demonstrated that loss of succinyl-CoA ligase in yeast results in increased lysine succinylation, suggesting that accumulation of mitochondrial succinyl-CoA can increase mitochondrial succinylation. Taken together, a new hypothesis has emerged from studies of these acidic lysine acylations: Elevated levels of acyl-CoA can induce lysine acylation in substrate proteins that may modulate their functions and possibly contribute to disease (Graphical abstract).

Mechanistic understanding of Kmal, Ksucc, and Kglu pathway dysregulation in inborn metabolic diseases may be relevant for developing novel therapeutic strategies for these diseases. For example, it may be possible to activate SIRT5 and alleviate the symptomatology in these conditions. Moreover, this mechanistic understanding can be
instrumental for the analysis of the role of lysine acylation in other diseases, like diabetes and cancer, where disturbance of metabolic homeostasis plays a critical role.

REFERENCES

restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. *Molecular cell* **49**, 186-199

ACKNOWLEDGEMENTS

This work was supported by the National Institute of Health (NIH) (GM105933 and CA160036 to Y.Z., R01GM101171 and R21CA177925 to D.B.L., T32-AG000114 to J. P., and R00CA168997 to J.W.L.). V.C.J.d.B. was supported by grants from the Netherlands Organization for Scientific Research (NWO: VENI grant 916.10.065) and the Academic Medical Center, Amsterdam, The Netherlands. M.T. was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2012ZX09301001-007), the National Basic Research Program of China (973 Program, No. 2014CBA02004), the Natural Science Foundation of China (No. 31370814), and the Shanghai Pujiang Program (No. 13PJ1410300). We thank the Cell line and DNA Biobank from Patients affected by Genetic Diseases (Instituto G. Gaslini) (project no. GTB12001), funded by Telethon Italy for providing cell lines.
During the course of this submission, a paper describing proteomic analysis of lysine malonylation was published in Molecular Cell (2015 Jun 9. pii: S1097-2765(15)00358-5).

FIGURE LEGENDS

Graphical Abstract: Schematic illustration of hypothetical mechanisms of how Kmal and Kglu may contribute to disease phenotype. MCD and GCDH deficiencies leads to elevated malonate/malonyl-CoA (top) and glutarate/glutaryl CoA (bottom) levels, respectively. This can cause dynamic changes in Kmal (top) and Kglu (bottom) which may contribute to disease phenotypes of patients with MCD deficiency and GCDH deficiency.

Figure 1. Lysine malonylation and biosynthesis of malonyl-CoA. (A) Structures of malonyl-lysine (Kmal), succinyl-lysine (Ksucc) and glutaryl-lysine (Kglu). SIRT5 is an enzyme with demalonylation, desuccinylation and deglutarlylation activities. (B) Illustration of malonyl-CoA metabolism. FAS, fatty acid synthase; ACC1, ACC2, acetyl-CoA carboxylase 1 and 2; MCD, malonyl-CoA decarboxylase; CPT1, carnitine palmitoyl transferase 1.

Figure 2. Dynamic changes of lysine malonylation vs other lysine acylations. (A) Lysine acylation levels in hepatocytes from (SIRT5+/+) and Sirt5 knockout (SIRT5-/-) mouse. Four pairs of mice were used. From top panel to bottom: anti-acetyllysine blot, anti-succinyllysine blot, anti-malonyllysine blot, and Coomassie blue loading control. B)
MCD+/+ cells treated with 5µM and 15µM Orlistat for 48hr. Top: anti-malonyllysine blot, bottom: ponceau loading control. (C) Dynamics of lysine acylation in response to orlistat, a FAS inhibitor. The MCD +/+ and MCD-/- cells were both treated with 15µM orlistat for 48 hr. From left to right: anti-malonyllysine blot, anti-acetyllysine blot, anti-succinyllysine blot, and Coomassie blue loading control. (D) Relative malonyl-CoA levels of MCD+/+ and MCD-/- cells, with and without 24h orlistat treatment. See also Figure S1.

Figure 3. Schematic representation of experimental workflow. (A) Profiling of lysine malonylation substrates in SIRT5 KO mouse liver. (B) Identification and quantification of lysine malonylation substrates, using SILAC and mass spectrometry, in MCD+/+ ("Heavy") and MCD-/- ("Light") cell lines. (C) Pie charts showing the total numbers of the identified lysine malonylated sites in mouse liver (top), MCD+/+ and MCD-/- human cells (bottom). The number of Kmal sites with their corresponding MaxQuant Andromeda score ranges and percentiles are indicated. (D) Representation of lysine malonylated histone sites in mouse and human histones. A1 and S1 represent the first alanine and serine residues of the protein, respectively.

Figure 4. Stoichiometry analysis of lysine malonylome. (A) Scatter plot showing the peptide intensities (i.e., the summed precursor-ion intensities of each peptide, derived from MaxQuant software) of the quantifiable lysine malonylated peptides in relation to their dynamic change in response to MCD knockout. Kmal Ratio (MCD+/+: MCD-/-): MS signal intensity from MCD+/+ divided by that from MCD-/-: Red: log2 Ratio (MCD+/+:MCD-/-) ≤ -1, Green: -1 ≤ log2 Ratio (MCD+/+:MCD-/-) ≤ 1; Purple: log2 Ratio
(MCD+/+ : MCD−/−) ≥1. (B) Histogram showing the distribution of the log2 ratio
(MCD+/+ : MCD−/−) SILAC ratios of Kmal sites in MCD+/+ cells over MCD−/− cells. The y-
axis represents the number of Kmal peptides in each category before (green), and after
(red) normalization to the protein amount. (C) Stoichiometry analysis of lysine
malonylation sites in MCD+/+ and MCD−/− human fibroblasts. X-axis represents
individual Kmal sites while Y-axis represents the stoichiometry percentage. (D) Three
dimensional protein structure of acetyl CoA acetyltransferase 1 (ACAT1) shown with
lysine malonylation sites (K190, K243, K251, K263, K268, K273) and the coenzyme A
binding site. Dash black lines represent hydrogen bonds.

Figure 5. Analysis of Kmal substrates vs Kac and Ksucc substrates. (A) Venn
diagrams showing the numbers of overlapping and non-overlapping Kmal, Ksucc and
Kac proteins (left) and modification sites (right) in the mouse proteome. The mouse Kac
and Ksucc datasets were obtained from two previous publications (10,43). (B) Venn
diagrams showing the numbers of overlapping and non-overlapping Kmal, Ksucc and
Kac proteins (left) and modification sites (right) in human proteome. All identified Kmal
sites in MCD+/+ and MCD−/− cells were combined for this comparison. The human Kac
and Ksucc datasets were from two previous works (41,47). (C) Graphical representation
of subcellular localization of lysine malonylated proteins. In each panel, bar diagrams
show the numbers of modified proteins that are exclusively located in cytosol, nuclei
and mitochondria in mouse liver (left) and human cells (right). See also Figure S2 and
S3.
Figure 6. Immunocytochemistry imaging of (A) MCD+/+ and (B) MCD-/- cells. Top to bottom: Kmal, Kac and Ksucc staining, and 2nd antibody only (negative) control. Left to right: Hoechst nuclear stain, corresponding PTM, mito-tracker red, and overlapped channels.

Figure 7. Lysine malonylation impacts mitochondrial function and fatty acid oxidation. (A) The SILAC ratios of lysine malonylation sites of VLCAD determined by quantitative proteomics between MCD+/+ and MCD -/- fibroblast cells, respectively. A number of malonylated lysines were only detected in MCD -/- cells. (B) VLCAD protein structure with mapped lysine malonylation sites (RCSB protein databank number 2UXW and 3B96). (C) Palmitoyl-CoA dehydrogenase activity of the VLCAD enzyme in cell lysates from MCD +/- and MCD -/- cells. Bars represent means +/- standard error of the mean (n=3-6). (D) 3-keto-palmitoyl-CoA dehydrogenase activity of the LCHAD enzyme in cell lysates from MCD +/- and MCD -/- cells. Bars represent means +/- standard error of the mean (n=3). (E-G) Respiration analysis of digitonin permeabilized Fao hepatoma cells that were exposed to 50 mM malonate for one day followed by overnight incubation in malonate-free medium (see text for details). Respiration analysis was performed with pyruvate/malate (E), succinate/rotenone (F) or octanoylcarnitine/malate (G). (H-J) Respiration analysis of digitonin permeabilized MCD +/- and MCD -/- fibroblasts similar to F and G. OCR = oxygen consumption rate, OM = oligomycin, AM/rot = antimycin/rotenone. * = p-value <0.05, ** = p-value < 0.01, *** p-value < 0.001. See also Figure S7.
Graphical illustration of hypothetical mechanisms of how Kmal and Kglu in contribute to disease phenotype. MCD and GCDH deficiencies lead to elevated malonate/malonyl CoA (top) and glutarate/glutaryl CoA (bottom) levels respectively. This can cause dynamic changes in Kmal (top) and Kglu (bottom) which may contribute to disease phenotypes of patients with MCD deficiency and CDH deficiency.
Figure 1

A

- Malonyl CoA
- Glutaryl CoA
- Lys
- Succinyl CoA
- SIRT5
- Kmal
- Ksucc
- Kglu

B

- CPT1
- Acyl CoA
- Palmitate
- FAS
- ACC1
- MCD
- ACC2
- Acetyl CoA
- Glucose, Amino Acids

Cytosol

Mitochondria

β-oxidation
Figure 4 MCD SILAC quantification

A

Median: -0.2716

B

Without Normalization
With Normalization

Site Count

Log2 Ratio (MCD+/+: MCD-/−)

C

Stoichiometry MCD +/+
Stoichiometry MCD −/−

Individual KmAL sites

D

ACAT1

K263
K268
K273
K190
K174
K251
Coenzyme A
K243
Figure 5

A

Mouse

B

Human

C

Mouse liver

Human cells
Figure 6

Hoechst
PTM
Mito
Overlay

MCD -/-

MCD +/-
Figure 7

(A) VLCAD
K639: MCD -/- only
K556: MCD -/- only
K482: MCD -/- only
K331: MCD -/- only
K278: MCD -/- only
K239: MCD -/- only
K195: MCD -/- only
K71: MCD -/- only

log2 SILAC ratio (MCD -/- vs MCD +/+)

0 50 100 150 200 250

(B) K239
K195
K276
K278
K331
K482
K639
K655

(C) VLCAD

(D) LCHAD

(E) pyruvate/malate
digitonin
ADP
substrate
OM
AM/rot

(F) succinate/rotenone
digitonin
ADP
substrate
OM
AM/rot

(G) octanoylcarnitine/malate
digitonin
ADP
substrate
OM
AM/rot

(H) OCR (%)
time (min)

0 10 20 30 40 50

0 100 200 300 400

red: 0 mM malonate
blue: 50 mM malonate

(I) octanoylcarnitine/malate
digitonin
ADP
substrate
OM
AM/rot

(J) state III OCR

control
MCD -/-

0 100 200 300 400 500

0 50 100 150 200

octcar
succ

*** p < 0.001